Bias in Machine Learning Models Can Be Significantly Mitigated by Careful Training: Evidence from Neuroimaging Studies
Rongguang Wang,
Pratik Chaudhari,
Christos Davatzikos
Abstract:Despite the great promise that machine learning has offered in many fields of medicine, it has also raised concerns about potential biases and poor generalization across genders, age distributions, races and ethnicities, hospitals, and data acquisition equipment and protocols. In the current study, and in the context of three brain diseases, we provide experimental data which support that when properly trained, machine learning models can generalize well across diverse conditions and do not suffer from biases.… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.