2019
DOI: 10.5802/jtnb.1066
|View full text |Cite
|
Sign up to set email alerts
|

Biases in prime factorizations and Liouville functions for arithmetic progressions

Abstract: L'accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://jtnb.cedram. org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
2
0

Year Published

2021
2021
2025
2025

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 20 publications
0
2
0
Order By: Relevance
“…We remark that biases and asymptotic behavior of other generalizations of µ(n) and λ(n) occur in the literature. For example, Humphries, Shekatkar, and Woo [6] recently studied the summatory function of λ(n; q, a) = (−1) Ω(n;q,a) , where Ω(n; q, a) denotes the number of prime factors p of n (counting multiplicity) which satisfy p ≡ a mod q. Also, biases exhibited in families of weighted sums, such as L α (x) =…”
mentioning
confidence: 99%
See 1 more Smart Citation
“…We remark that biases and asymptotic behavior of other generalizations of µ(n) and λ(n) occur in the literature. For example, Humphries, Shekatkar, and Woo [6] recently studied the summatory function of λ(n; q, a) = (−1) Ω(n;q,a) , where Ω(n; q, a) denotes the number of prime factors p of n (counting multiplicity) which satisfy p ≡ a mod q. Also, biases exhibited in families of weighted sums, such as L α (x) =…”
mentioning
confidence: 99%
“…We can also construct an example of a function from part (iii) of Theorem 1 with no apparent bias, by selecting α = 1/ √ 2 and β = 1 in (6). That is, we select the values δ 2j+1 for j ≥ 1 according to the binary expansion of 1/ √ 2 = (0.1011010100 .…”
mentioning
confidence: 99%