When peritoneal dialysis was introduced several years ago an important alternative dialysis therapy to hemodialysis was made available for the treatment of end-stage chronic disease. However, a continuous search for new developments and technologies is necessary to find the optimal peritoneal dialysis fluid (PDF) to preserve peritoneal membrane function as long as possible. Conventional PDFs are known to compromise the functional integrity of the peritoneal membrane as a consequence of their acidic pH in combination with their high lactate content, as well as the high concentrations of glucose and glucose degradation products (GDPs) present in currently used conventional solutions. Novel solutions such as bicarbonate-buffered PDF (at neutral pH) display improved in vitro biocompatibility as compared to conventional, acidic lactate-buffered PDF. Since these novel solutions are manufactured in dual-chambered bags they also contain fewer GDPs, thus further reducing their potential toxicity and protein glycation. Clinically the novel solutions reduce inflow pain and improve peritoneal membrane transport characteristics, ultrafiltration capacity, and effluent markers of peritoneal membrane integrity. The concept of continuous flow peritoneal dialysis (CFPD) is another approach to optimize PDF. The technique of CFPD not only enables the individualization of acid-base correction by variable concentrations of HCO3- but may also help to restore peritoneal cell functions by neutral pH, reduced glucose load, diminished GDP content, and reduced advanced glycation end product (AGE) formation, thereby potentially contributing to the improved preservation of peritoneal membrane function.