Polyvinyl alcohol (PVA) has good biocompatibility, a simple fabrication process, and environmental protection, which is very suitable for the production of TENG applied to smart home control. However, the output performance of the TENG composed of PVA and PDMS films is not high. Previous research has explored the enhancement of PVA-based TENG performance by doping with conductive materials to modify the dielectric properties of PVA composite films. Nevertheless, this approach is associated with issues of high production costs and energy consumption. This work prepared a mullite/PVA composite material TENG (MP-TENG), the introduction of mullite induced interfacial polarization in the composite film. This effect resulted in an augmented number of polarization centers, thereby enhancing the charge-sensing capability of the composite film. Consequently, the triboelectric output performance of the MP-TENG was improved. MP-TENGs with different amounts of mullite fiber doping were prepared, and the maximum output performance was obtained when the doping level reached 3 wt%. At this concentration, the composite film exhibited an open-circuit voltage of 70.89 V and a short-circuit current of 2.45μA. An enhancement of 1.78 and 1.71 times was achieved with respect to the pure PVA-TENG, respectively. In addition, MP-TENG exhibited excellent sensing characteristics, a smart home control system was designed in conjunction with a hardware circuit, which captured hand motions and encoded them to generate binary codes to control the on/off state of the indoor home.