Bidirectional Transformer Reranker for Grammatical Error Correction
Ying Zhang,
Hidetaka Kamigaito,
Manabu Okumura
Abstract:Pre-trained sequence-to-sequence (seq2seq) models have achieved state-of-the-art results in the grammatical error correction tasks. However, these models are plagued by prediction bias owing to their unidirectional decoding. Thus, this study proposed a bidirectional transformer reranker (BTR) that re-estimates the probability of each candidate sentence generated by the pre-trained seq2seq model. The BTR preserves the seq2seq-style transformer architecture but utilizes a BERT-style self-attention mechanism in t… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.