Abstract:In this paper we derive necessary and sufficient homological and cohomological conditions for profinite groups and modules to be of type FPn over a profinite ring R, analogous to the Bieri-Eckmann criteria for abstract groups. We use these to prove that the class of groups of type FPn is closed under extensions, quotients by subgroups of type FPn, proper amalgamated free products and proper HNN-extensions, for each n. We show, as a consequence of this, that elementary amenable profinite groups of finite rank a… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.