“…Compared with GO, rGO has much more promising applications due to its higher electron mobility, better optical properties, chemical stability, high conductivity, high surface area, and higher thermal stability [ 161 , 162 ]. GO/rGo can make composites using different types of metal oxides/metals and act as a good photo-catalyst for harmful organic contaminants, and are usually cast off in fuel cells, such as Fe 2 O 3 /ZnO, La/TiO 2 , CuO/TiO 2 , BiOBr, Ag/ZnO, ZnFe 2 O 4 , Ag 3 PO 4 , Bi 2 Fe 4 O 9 , BaCrO 4 , CuFe 2 O 4 , W 18 O 49 , ZnO/ZnFe 2 O 4 , Cu 2 O, WO 3 , BiOI, Ag/Ag 3 PO 4 , BiVO 4 , ZnO, TiO 2 , Mn 2 O, Mn 3 O 4 , COFe 2 , Cu 2 O/SnO 2 , Bi 5 Nb 3 O 15 , ZnWO 4 , Nd/TiO 2 , SnO 2 , SnWO 4 , Bi 2 WO 6 , Ta 2 O 5 , ZnFe 2 O 4 , CdSe–TiO 2 , La2Ti 2 O 7 [ 163 , 164 , 165 , 166 , 167 , 168 , 169 ]. The incorporation of GO/rGO in the above-mentioned metals/metal oxides reduces the band gap and can efficiently reduce the recombination of generated holes and electron pairs, making the photo-catalyst more effective for photo-degradation.…”