Unitized regenerative fuel cells have emerged as promising energy conversion and storage systems for various applications. However, in order to optimize their efficiency, it is crucial to enhance the performance of the bifunctional catalyst. This study aims to provide deeper insights into the electrochemical behavior and performance of the bifunctional catalyst. Several electrocatalysts were prepared and evaluated using rotating disc electrode measurements. The primary focus was placed on investigating the interaction between Pt, Ir, and the support material, antimony doped tin oxide (ATO), and their impact on the oxygen evolution reaction and oxygen reduction reaction. Among the analyzed catalysts, Pt black mixed with synthesized IrO2 supported on developed ATO exhibited the highest performance, considering the results from both the fuel cell and electrolyzer systems.