In this paper, we use the asymptotic perturbation method to investigate nonlinear oscillations and chaotic dynamics in a rotor-active magnetic bearings (AMB) system with 8-pole legs and the time-varying stiffness. The stiffness in the AMB is considered as the time varying in a periodic form. Because of considering the weight of the rotor, the formulation on the electromagnetic force resultants includes the quadratic and cubic nonlinearities. The resulting dimensionless equations of motion for the rotor-AMB system with the time-varying stiffness in the horizontal and vertical directions are a two-degree-of-freedom nonlinear system with quadratic and cubic nonlinearities and parametric excitation. The asymptotic perturbation method is used to obtain the averaged equations in the case of primary parametric resonance and 1/2 subharmonic resonance. It is found that there exist period-3, period-4, period-6, period-7, period-8, quasiperiodic and chaotic modulated amplitude oscillations in the rotor-AMB system with the time-varying stiffness. It is seen from the numerical results that there are the phenomena of the multiple solutions and the soft-spring type and the hardening-spring type in nonlinear frequency-response curves for the rotor-AMB system. The parametric excitation, or the time-varying stiffness produced by the PD controller is considered to be a controlling force which can control the chaotic response in the rotor-AMB system to a period n motion.