“…(27)Then, we get the integral inequalityc − g ℓ 2 ≤ α(τ ) + τ ) ≤ C max[h −1 β, λ]By the Gronwall's Lemma we finally get the estimatec − g ℓ 2 ≤ α(τ )e τ 0 δ(q)dq = α(τ )e C max[h −1 β,λ]τTherefore, we have proved that Lemma 10. Let a, b and c dafined by(25)(26)(27), then Equazioni Differenziali della Fisica Matematicac − g ℓ 2 ≤ C aτ h + Cbλ + c C 2 λ 2 h e Cλτ − 1 + cτ Cλh e Cλτ e C max[h −1 β,λ]τ (29)for some positive constant C independent of h.In conclusion Let g ∈ C(R, ℓ 2 (Z)) be the solution to the discrete nonlinear Schrödinger equation(22); let ψ(τ, x) ∈ C(R, H 1 (R)) be the solution to the nonlinear Schrödinger equation (3) with initial condition ψ 0 (x) = g n (0)u n (x); let a, b and c defined by Lemma 10; let λ be defined by Lemma 7. Then, for some positive constant C independent of h it follows thatψ(τ, •) − n∈Z g n (τ )e iΛ1τ /h u n (•) L (30) ≤ Cλ + τ Ch −1 λ max [β, hλ] e Cλτ + +C aτ h + Cbλ + c C 2 λ 2 h e Cλτ − 1 + cτ Cλh e Cλτ e C max[h −1 β,λ]τ , ∀τ ∈ R + .(31)Proof.…”