Optimal fourth-order multiple-root finders with parameter λ were conjugated via the Möbius map applied to a simple polynomial function. The long-term dynamics of these conjugated maps in the λ -parameter plane was analyzed to discover some properties of periodic, bounded and chaotic orbits. The λ -parameters for periodic orbits in the parameter plane are painted in different colors depending on their periods, and the bounded or chaotic ones are colored black to illustrate λ -dependent connected components. When a red fixed component in the parameter plane branches into a q-periodic component, we encounter geometric bifurcation phenomena whose characteristics determine the desired boundary equation and bifurcation point. Computational results along with illustrated components support the bifurcation phenomena underlying this paper.