2016
DOI: 10.2139/ssrn.2746709
|View full text |Cite
|
Sign up to set email alerts
|

Big Data Analytics: A New Perspective

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2016
2016
2017
2017

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 14 publications
0
1
0
Order By: Relevance
“…Granted, the theory and practice of penalized regression remains an area of continuous development: The considerable advances that have been made all come with their own assumptions and limitations relating to ease of implementation and computational requirements (Farcomeni, 2008). We encourage researchers to familiarize themselves with Lasso (least absolute shrinkage and selection operator; Tibshirani, 1996), elastic net (Zou & Hastie, 2005), OCMT (one covariate at a time multiple testing; Chudik, Kapetanios, & Hashem Pesaran, 2016), and the R package glmnet .…”
Section: Volumementioning
confidence: 99%
“…Granted, the theory and practice of penalized regression remains an area of continuous development: The considerable advances that have been made all come with their own assumptions and limitations relating to ease of implementation and computational requirements (Farcomeni, 2008). We encourage researchers to familiarize themselves with Lasso (least absolute shrinkage and selection operator; Tibshirani, 1996), elastic net (Zou & Hastie, 2005), OCMT (one covariate at a time multiple testing; Chudik, Kapetanios, & Hashem Pesaran, 2016), and the R package glmnet .…”
Section: Volumementioning
confidence: 99%