The significance and possibilities of idea generation and evaluation are increasing due to the increasing demands for digital innovation and the abundance of textual data. Textual data such as social media, publications, patents, documents, etc. are used to generate ideas, yet manual analysis is affected by bias and subjectivity. Machine learning and visual analytics tools could be used to support idea generation and evaluation, referred to as idea mining, to unlock the potential of voluminous textual data. Idea mining is applied to support the extraction of useful information from textual data. However, existing literature merely focuses on the outcome and overlooks structuring and standardizing the process itself. In this paper, to support idea mining, we designed a model following design science research, which overlaps with the Cross-Industry-Standard-Process for Data Mining (CRISP-DM) process and adapts well-established models for technology scouting. The proposed model separates the duties of actors in idea mining into two layers. The first layer presents the business layer, where tasks performed by technology scouts, incubators, accelerators, consultants, and contest managers are detailed. The second layer presents the technical layer where tasks performed by data scientists, data engineers, and similar experts are detailed overlapping with CRISP-DM. For future research, we suggest an ex-post evaluation and customization of the model to other techniques of idea mining.