2024
DOI: 10.54790/rccs.51
|View full text |Cite
|
Sign up to set email alerts
|

Big data en ciencias sociales. Una introducción a la automatización de análisis de datos de texto mediante procesamiento de lenguaje natural y aprendizaje automático

Alba Taboada Villamarín

Abstract: Las innovaciones en el campo de la ingeniería computacional y la inteligencia artificial brindan nuevas oportunidades metodológicas para la investigación científica, permitiendo el estudio de fenómenos sociales emergentes que nacen y habitan en los espacios virtuales. El propósito de este trabajo es familiarizar al científico social con los procesos ampliamente establecidos en el análisis masivo de texto mediante técnicas de aprendizaje automático que dan lugar a lo que hoy conocemos como procesamiento de leng… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 35 publications
0
1
0
Order By: Relevance
“…To this end, a systematic review of the existing literature has been chosen, resorting to emerging approaches to conduct massive literature analyses through computational techniques. These approaches have proven to be highly successful in understanding the current state of affairs in topics with a high density of publications, allowing for the identification of trends and patterns in research (some examples can be consulted in Karami et al 2020;Cao et al 2023;Taboada Villamarín 2024). This approach involves the application of two sophisticated natural language processing algorithms: the K-means clustering algorithm and the Latent Dirichlet Allocation model.…”
Section: Methodsmentioning
confidence: 99%
“…To this end, a systematic review of the existing literature has been chosen, resorting to emerging approaches to conduct massive literature analyses through computational techniques. These approaches have proven to be highly successful in understanding the current state of affairs in topics with a high density of publications, allowing for the identification of trends and patterns in research (some examples can be consulted in Karami et al 2020;Cao et al 2023;Taboada Villamarín 2024). This approach involves the application of two sophisticated natural language processing algorithms: the K-means clustering algorithm and the Latent Dirichlet Allocation model.…”
Section: Methodsmentioning
confidence: 99%