Studies of insect herbivory on fossilized leaves tend to focus on a few, relatively simple metrics that are agnostic to the distribution of insect damage types among host plants. More complex metrics that link particular damage types to particular host plants have the potential to address additional ecological questions, but such metrics can be biased by sampling incompleteness due to the difficulty of distinguishing the true absence of a particular interaction from the failure to detect it—a challenge that has been raised in the ecological literature. We evaluate a range of methods for characterizing the relationships between damage types and host plants by performing resampling and subsampling exercises on a variety of datasets. We found that the components of beta diversity provide a more valid, reliable, and interpretable method for comparing component communities than do bipartite network metrics and that the rarefaction of interactions represent a valid, reliable, and interpretable method for comparing compound communities. Both beta diversity and rarefaction of interactions avoid the potential pitfalls of multiple comparisons. Finally, we found that the host specificity of individual damage types is challenging to assess. Whereas bipartite network metrics are sufficiently biased by sampling incompleteness to be inappropriate for fossil herbivory data, alternatives exist that are perfectly suitable for fossil datasets with sufficient sample coverage.