Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Wind power has emerged as a crucial substitute for conventional fossil fuels. The combination of advanced technologies such as the internet of things (IoT) and machine learning (ML) has given rise to a new generation of energy systems that are intelligent, reliable, and efficient. The wind energy sector utilizes IoT devices to gather vital data, subsequently converting them into practical insights. The aforementioned information aids among others in the enhancement of wind turbine efficiency, precise anticipation of energy production, optimization of maintenance approaches, and detection of potential risks. In this context, the main goal of this work is to combine the IoT with ML in the wind energy sector by processing weather data acquired from sensors to predict wind power generation. To this end, three different regression models are evaluated. The models under comparison include Linear Regression, Random Forest, and Lasso Regression, which were evaluated using metrics such as coefficient of determination (R²), adjusted R², mean squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE). Moreover, the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) were taken into consideration as well. After examining a dataset from IoT devices that included weather data, the models provided substantial insights regarding their capabilities and responses to preprocessing, as well as each model’s reaction in terms of statistical performance deviation indicators. Ultimately, the data analysis and the results from metrics and criteria show that Random Forest regression is more suitable for weather condition datasets than the other two regression models. Both the advantages and shortcomings of the three regression models indicate that their integration with IoT devices will facilitate successful energy prediction.
Wind power has emerged as a crucial substitute for conventional fossil fuels. The combination of advanced technologies such as the internet of things (IoT) and machine learning (ML) has given rise to a new generation of energy systems that are intelligent, reliable, and efficient. The wind energy sector utilizes IoT devices to gather vital data, subsequently converting them into practical insights. The aforementioned information aids among others in the enhancement of wind turbine efficiency, precise anticipation of energy production, optimization of maintenance approaches, and detection of potential risks. In this context, the main goal of this work is to combine the IoT with ML in the wind energy sector by processing weather data acquired from sensors to predict wind power generation. To this end, three different regression models are evaluated. The models under comparison include Linear Regression, Random Forest, and Lasso Regression, which were evaluated using metrics such as coefficient of determination (R²), adjusted R², mean squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE). Moreover, the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) were taken into consideration as well. After examining a dataset from IoT devices that included weather data, the models provided substantial insights regarding their capabilities and responses to preprocessing, as well as each model’s reaction in terms of statistical performance deviation indicators. Ultimately, the data analysis and the results from metrics and criteria show that Random Forest regression is more suitable for weather condition datasets than the other two regression models. Both the advantages and shortcomings of the three regression models indicate that their integration with IoT devices will facilitate successful energy prediction.
Integrating renewable energy sources with aquaculture systems on floating multi-use platforms presents an innovative approach to developing sustainable and resilient offshore infrastructure, utilizing the ocean’s considerable potential. From March 2021 to January 2022, a 1:15-scale prototype was tested in Reggio Calabria, Italy, which gave crucial insights into how these structures behave under different wave conditions. This study investigates the application of Artificial Neural Networks (ANNs) to predict changes in mooring loads, particularly at key points of the structure. By analyzing metocean data, several ANN models and optimization techniques were evaluated to identify the most accurate predictive model. With a Normalized Root Mean Square Error (NRMSE) of 1.7–4.7%, the results show how ANNs can effectively predict offshore platform dynamics. This research highlights the potential of machine learning in developing and managing sustainable ocean systems, setting the stage for future advancements in data-driven marine resource management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.