Three-terminal (3T) structured electrochemical random access memory (ECRAM) has been proposed as a synaptic device based on improved synaptic characteristics. However, the proposed 3T ECRAM has a larger area requirement than 2T synaptic devices; thereby limiting integration density. To overcome this limitation, this study presents the development of a high-density vertical structure for the 3T ECRAM. In addition, complementary metal-oxide semiconductor (CMOS)-compatible materials and 8-inch wafer-based CMOS fabrication processes were utilized to verify the feasibility of mass production. The achievements of this work demonstrate the potential for high-density integration and mass production of 3T ECRAM devices.