2017
DOI: 10.1007/978-3-319-64206-2_4
|View full text |Cite
|
Sign up to set email alerts
|

Big Five Personality Recognition from Multiple Text Genres

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
3

Year Published

2018
2018
2024
2024

Publication Types

Select...
3
3
3

Relationship

1
8

Authors

Journals

citations
Cited by 13 publications
(7 citation statements)
references
References 11 publications
0
4
0
3
Order By: Relevance
“…, 2012). Several studies have been conducted on predicting the personality from written texts on social networks (dos Santos et al. , 2017; Ramezani et al.…”
Section: Theoretical Backgroundmentioning
confidence: 99%
“…, 2012). Several studies have been conducted on predicting the personality from written texts on social networks (dos Santos et al. , 2017; Ramezani et al.…”
Section: Theoretical Backgroundmentioning
confidence: 99%
“…Neste trabalho será utilizado o córpus b5 (Ramos et al, 2018) de textos em português brasileiro rotulados com escores de personalidade do modelo CGF relativos aos seus autores. O córpus foi utilizado em estudos prévios de geração de texto baseada em personalidade (Paraboni et al, 2017) e inferência de traços de personalidade a partir de textos e caracterização autoral (dos Santos et al, 2017;Hsieh et al, 2018;Silva & Paraboni, 2018b,a). Detalhes desta organização são discutidos por Ramos et al (2018).…”
Section: O Córpus B5unclassified
“…Then, they concatenated the vectors with statistical features (like rate of emoticons, rate of capital letters and words, and total number of text posts of each user), to construct the input feature space for traditional regression algorithm to carry out final prediction in Big Five model. Santos et al [68] examined that which of the Big Five personality traits are best predicted by different text genres and the needed amount of text for doing the task appropriately. Dandannavar, et al [69] have surveyed personality prediction using social media text.…”
Section: Literature Reviewmentioning
confidence: 99%