Platelets are a remarkable mammalian adaptation that are required for human survival by virtue of their ability to prevent and arrest bleeding. Ironically, however, in the past century, the platelets’ hemostatic activity became maladaptive for the increasingly large percentage of individuals who develop age-dependent progressive atherosclerosis. As a result, platelets also make a major contribution to ischemic thrombotic vascular disease, the leading cause of death worldwide. In this brief review, I provide historical descriptions of a highly selected group of topics to provide a framework for understanding our current knowledge and the trends that are likely to continue into the future of platelet research. For convenience, I separate the eras of platelet research into the “Descriptive Period” extending from ~1880-1960 and the “Mechanistic Period” encompassing the past ~50 years since 1960. We currently are reaching yet another inflection point, as there is a major shift from a focus on traditional biochemistry and cell and molecular biology to an era of single molecule biophysics, single cell biology, single cell molecular biology, structural biology, computational simulations, and the high-throughput, data-dense techniques collectively named with the “omics” postfix. Given the progress made in understanding, diagnosing, and treating many rare and common platelet disorders during the past 50 years, I think it appropriate to consider it a Golden Age of Platelet Research and to recognize all of the investigators who have made important contributions to this remarkable achievement.