In the auditory pathway, the inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from the lower auditory nuclei, contralateral IC, and auditory cortex (AC), and then uploads these inputs to the thalamus and cortex. Meanwhile, the AC modulates the sound signal processing of IC neurons, including their latency (i.e., first-spike latency). Excitatory and inhibitory corticofugal projections to the IC may shorten and prolong the latency of IC neurons, respectively. However, the synaptic mechanisms underlying the corticofugal latency modulation of IC neurons remain unclear. Thus, this study probed these mechanisms via in vivo intracellular recording and acoustic and focal electric stimulation. The AC latency modulation of IC neurons is possibly mediated by pre-spike depolarization duration, pre-spike hyperpolarization duration, and spike onset time. This study suggests an effective strategy for the timing sequence determination of auditory information uploaded to the thalamus and cortex.