Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Human noroviruses (HuNoVs) are a significant cause of epidemic and sporadic acute gastroenteritis worldwide. The lack of a reproducible culture system hindered the study of HuNoV replication and pathogenesis for almost a half-century. This barrier was overcome with our successful cultivation of multiple HuNoV strains in human intestinal enteroids (HIEs), which has significantly advanced HuNoV research. We optimized culture media conditions and generated genetically modified HIE cultures to enhance HuNoV replication in HIEs. Building upon these achievements, we now present new insights into this culture system, which involve testing different media, unique HIE lines, and additional virus strains. HuNoV infectivity was evaluated and compared in new HIE models, including HIEs generated from different intestinal segments of individual adult organ donors, HIEs from human intestinal organoids produced from directed differentiation of human embryonic stem cells that were then transplanted and matured in mice before making enteroids (H9tHIEs), genetically engineered (J4 FUT2 knock-in [ KI ] , J2 STAT1 knockout [ KO ]) HIEs, as well as HIEs derived from a patient with common variable immunodeficiency (CVID) and from infants. Our findings reveal that small intestinal HIEs, but not colonoids, from adults, H9tHIEs, HIEs from a CVID patient, and HIEs from infants support HuNoV replication with segment and strain-specific differences in viral infection. J4 FUT2-KI HIEs exhibit the highest susceptibility to HuNoV infection, allowing the cultivation of a broader range of genogroup I and II HuNoV strains than previously reported. Overall, these results contribute to a deeper understanding of HuNoVs and highlight the transformative potential of HIE cultures in HuNoV research. IMPORTANCE Human noroviruses (HuNoVs) cause global diarrheal illness and chronic infections in immunocompromised patients. This paper reports approaches for cultivating HuNoVs in secretor positive human intestinal enteroids (HIEs). HuNoV infectivity was compared in new HIE models, including ones from (i) different intestinal segments of single donors, (ii) human embryonic stem cell-derived organoids transplanted into mice, (iii) genetically modified lines, and (iv) a patient with common variable immunodeficiency disease. HIEs from small intestine, but not colon, support HuNoV replication with donor, segment, and strain-specific variations. Unexpectedly, HIEs from one donor are resistant to GII.3 infection. The genetically modified J4 FUT2 knock-in ( KI ) HIEs enable cultivation of a broad range of GI and GII genotypes. New insights into strain-specific differences in HuNoV replication in HIEs support this platform for advancing understanding of HuNoV biology and developing potential therapeutics.
Human noroviruses (HuNoVs) are a significant cause of epidemic and sporadic acute gastroenteritis worldwide. The lack of a reproducible culture system hindered the study of HuNoV replication and pathogenesis for almost a half-century. This barrier was overcome with our successful cultivation of multiple HuNoV strains in human intestinal enteroids (HIEs), which has significantly advanced HuNoV research. We optimized culture media conditions and generated genetically modified HIE cultures to enhance HuNoV replication in HIEs. Building upon these achievements, we now present new insights into this culture system, which involve testing different media, unique HIE lines, and additional virus strains. HuNoV infectivity was evaluated and compared in new HIE models, including HIEs generated from different intestinal segments of individual adult organ donors, HIEs from human intestinal organoids produced from directed differentiation of human embryonic stem cells that were then transplanted and matured in mice before making enteroids (H9tHIEs), genetically engineered (J4 FUT2 knock-in [ KI ] , J2 STAT1 knockout [ KO ]) HIEs, as well as HIEs derived from a patient with common variable immunodeficiency (CVID) and from infants. Our findings reveal that small intestinal HIEs, but not colonoids, from adults, H9tHIEs, HIEs from a CVID patient, and HIEs from infants support HuNoV replication with segment and strain-specific differences in viral infection. J4 FUT2-KI HIEs exhibit the highest susceptibility to HuNoV infection, allowing the cultivation of a broader range of genogroup I and II HuNoV strains than previously reported. Overall, these results contribute to a deeper understanding of HuNoVs and highlight the transformative potential of HIE cultures in HuNoV research. IMPORTANCE Human noroviruses (HuNoVs) cause global diarrheal illness and chronic infections in immunocompromised patients. This paper reports approaches for cultivating HuNoVs in secretor positive human intestinal enteroids (HIEs). HuNoV infectivity was compared in new HIE models, including ones from (i) different intestinal segments of single donors, (ii) human embryonic stem cell-derived organoids transplanted into mice, (iii) genetically modified lines, and (iv) a patient with common variable immunodeficiency disease. HIEs from small intestine, but not colon, support HuNoV replication with donor, segment, and strain-specific variations. Unexpectedly, HIEs from one donor are resistant to GII.3 infection. The genetically modified J4 FUT2 knock-in ( KI ) HIEs enable cultivation of a broad range of GI and GII genotypes. New insights into strain-specific differences in HuNoV replication in HIEs support this platform for advancing understanding of HuNoV biology and developing potential therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.