2012
DOI: 10.1142/s1402925112500192
|View full text |Cite
|
Sign up to set email alerts
|

Billiard Algebra, Integrable Line Congruences, and Double Reflection Nets

Abstract: Billiard systems within quadrics, playing the role of discrete analogues of geodesics on ellipsoids, are incorporated into the theory of integrable quad-graphs. An initial observation is that the Sixpointed star theorem, as the operational consistency for the billiard algebra, is equivalent to an integrability condition of a line congruence. A new notion of the double reflection nets as a subclass of dual Darboux nets associated with pencils of quadrics is introduced, basic properties and several examples are … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0
4

Year Published

2012
2012
2018
2018

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(10 citation statements)
references
References 16 publications
0
6
0
4
Order By: Relevance
“…Thus, the segments x k−1 x k and x k x k+1 determined by 3 successive points of the mapping (2.3), (2.4) may be either on the same side of the tangent plane T x k Q n−1 (the usual billiard reflection at x k ), or on the opposite sides of T x k Q n−1 . Such configurations were studied in [3,4,6,12].…”
Section: Heisenberg Model and Billiardsmentioning
confidence: 99%
See 2 more Smart Citations
“…Thus, the segments x k−1 x k and x k x k+1 determined by 3 successive points of the mapping (2.3), (2.4) may be either on the same side of the tangent plane T x k Q n−1 (the usual billiard reflection at x k ), or on the opposite sides of T x k Q n−1 . Such configurations were studied in [3,4,6,12].…”
Section: Heisenberg Model and Billiardsmentioning
confidence: 99%
“…Since {φ 1 , φ 2 } = 4 A −1 x, y = 0| M c,h , it follows that M c,h is a symplectic submanifold of R 2n (x, y) and the mapping φ is a symplectic transformation of M c,h (see Theorem 2.1, [18] 5 ). 6 The Hamiltonian and contact integrability of the virtual billiard dynamics is described in [18]. In the case when EA is positive definite, c = +1, this is a billiard system within ellipsoid Q n−1 in the pseudo-Euclidean space (see [19,5]).…”
Section: Heisenberg Model and Billiardsmentioning
confidence: 99%
See 1 more Smart Citation
“…Теорема о двойном отражении является прективно-геометрическим стержнем динамики биллиардов в областях, ограниченных софокусными квадриками; она утверждает, что отражения от двух софокусных квадрик можно переставлять. Четыре прямые, получающиеся отражением друг друга в контексте теоремы о двойном отражении, образуют конфигурацию двойного отражения, играющую роль квад-уравнения для недавно открытого класса интегрируемых конгруэнций прямых, называемых решетками двойных отражений [20]. Интегрируемость возникает как следствие операционной непротиворечивости биллиардной алгебры из [16]; см.…”
Section: введение и исторические сведенияunclassified
“…In Euclidean spaces of arbitrary dimension, such configurations were introduced by Dragović and Radnović in [9]. It appears that a multidimensional variant of Darboux's 4-periodic virtual trajectory with reflections on two quadrics, refereed as double-reflection configuration [11], is fundamental in the construction of the double reflection nets in Euclidean spaces (see [13]) and in pseudo-Euclidean spaces (see [14]). They also played a role in a construction of the billiard algebra in [10].…”
Section: Introductionmentioning
confidence: 99%