2023
DOI: 10.4213/rm10100
|View full text |Cite
|
Sign up to set email alerts
|

Billiards and intergrable systems

Anatoly Timofeevich Fomenko,
Viktoriya Viktorovna Vedyushkina

Abstract: Обзор посвящен классу интегрируемых гамильтоновых систем и классу интегрируемых биллиардов, а также недавним результатам авторов и их учеников по задаче сравнения этих классов с точки зрения послойной гомеоморфности их слоений Лиувилля. Ключевым инструментом здесь оказались введенные В. В. Ведюшкиной биллиарды на кусочно-плоских CW-комплексах - топологические биллиарды и биллиардные книжки. Приведено построение класса эволюционных (силовых) биллиардов, введенных недавно А. Т. Фоменко и позволяющих моделировать… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 169 publications
0
2
0
Order By: Relevance
“…In the case of a circle, the degree of this additional integral can be lowered, since the angular momentum relative to the center of the circle is conserved. In recent works by A. T. Fomenko and V. V. Vedyushkina (state of the art is reviewed in [9], also see other works by these authors), new class of integrable systems, so called 'billiard books', was introduced and investigated. Configuration space of such a new system is obtained by glueing a finite number of domains bounded by arcs of confocal quadrics along the boundary segments.…”
Section: Discussion and Further Developementmentioning
confidence: 99%
See 1 more Smart Citation
“…In the case of a circle, the degree of this additional integral can be lowered, since the angular momentum relative to the center of the circle is conserved. In recent works by A. T. Fomenko and V. V. Vedyushkina (state of the art is reviewed in [9], also see other works by these authors), new class of integrable systems, so called 'billiard books', was introduced and investigated. Configuration space of such a new system is obtained by glueing a finite number of domains bounded by arcs of confocal quadrics along the boundary segments.…”
Section: Discussion and Further Developementmentioning
confidence: 99%
“…The interior of the domain B ε contains no singular point of the elliptic coordinates (9). Thus there are no condition like continuity of displacement or gradient.…”
Section: Asymptotic Of Energy Levels: Proof Of Theoremmentioning
confidence: 99%