Natural hazards constantly threaten the sustainable construction and operation of railway engineering facilities, making railway disaster risk assessment an essential approach to disaster prevention. Despite numerous studies that have focused on railway risk assessment, few have quantified specific damages, such as economic losses and human casualties. Meanwhile, the mechanism of impact damage from various disasters on railway facilities and the propagation of functional failure in railway systems have not been thoroughly summarized and addressed. Thus, it is essential to conduct effective quantitative risk assessments (QRAs) to facilitate the sustainable design, construction, and operation of rail infrastructure. This paper aimed to review and discuss the systematic development of risk assessment in railway engineering facilities. Firstly, we highlighted the importance of disaster QRA for railway facilities. Next, numerous limitations of QRA methods were concluded after conducting a comprehensive review of the risk assessment research applied to railway facilities, such as bridges, tunnels, and roadbeds. Furthermore, true QRA (TQRA) application in railway engineering has faced several significant challenges. Therefore, we proposed a promising TQRA strategy for railway engineering facilities based on the integration of building information modeling (BIM) and geographic information systems (GIS). The proposed BIM+GIS technology is expected to provide sustainable future directions for railway engineering QRA procedures.