Clinoptilolite is one of the most common, widespread and abundant zeolites in nature. Its availability, low cost, and outstanding ion exchange properties make clinoptilolite an excellent candidate for both direct use and various modifications to create new low-cost functional materials for sustainable development. Specific applications in which clinoptilolite is already being used include water treatment and heavy metal ion removal, agricultural purposes, storage and conversion of unwanted gaseous emissions into the atmosphere, production of catalysts and photocatalysts, bioactive materials, and a number of others. Unlike some other zeolites, clinoptilolite is difficult to synthesize, which is why most publications refer to this zeolite in its natural form, either directly from the deposit or after applying various processes to this mineral to improve its properties. Among the modification methods used, ion exchange stands out. This review is devoted to the study of ion exchange processes in natural clinoptilolite with two goals: first, as its strategic property for use in processes in which cation exchange is fundamentally necessary; second, as a way to modify it to create composite materials with predetermined desired properties.