This review extensively discusses current developments in bimetallic nanoparticle–GO and bimetallic nanoparticle–MOF nanocomposites as potential catalysts for HER, along with their different synthesis methodologies, structural characteristics, and catalytic mechanisms. The photoelectrocatalytic performance of these catalysts was also compared based on parameters such as Tafel slope, current density, onset potential, turnover frequency, hydrogen yield, activation energy, stability, and durability. The review shows that the commonly used metal alloys in the bimetallic nanoparticle–GO-based catalysts for HERs include Pt-based alloys (e.g., PtNi, PtCo, PtCu, PtAu, PtSn), Pd-based alloys (e.g., PdAu, PdAg, PdPt) or other combinations, such as AuNi, AuRu, etc., while the most used electrolyte sources are H2SO4 and KOH. For the bimetallic nanoparticle MOF-based catalysts, Pt-based alloys (e.g., PtNi, PtCu), Pd-based alloys (e.g., PdAg, PdCu, PdCr), and Ni-based alloys (e.g., NiMo, NiTi, NiAg, NiCo) took the lead, with KOH being the most frequently used electrolyte source. Lastly, the review addresses challenges and prospects, highlighting opportunities for further optimization and technological integration of the catalysts as promising alternative photo/electrocatalysts for future hydrogen production and storage.