2021
DOI: 10.3390/catal12010033
|View full text |Cite
|
Sign up to set email alerts
|

Bimetallic PdCo Nanoparticles Loaded in Amine Modified Polyacrylonitrile Hollow Spheres as Efficient Catalysts for Formic Acid Dehydrogenation

Abstract: Polyacrylonitrile hollow nanospheres (HPAN), derived from the polymerization of acrylonitrile in the presence of polystyrene emulsion (as template), were modified by surface amination with ethylenediamine (EDA), and then used as support for loading Pd or PdCo nanoparticles (NPs). The resultant bimetallic catalyst (named PdCo0.2/EDA-HPAN) can efficiently catalyze the additive-free dehydrogenation of formic acid with very high activity, selectivity and recyclability, showing turnover frequencies (TOF) of 4990 h−… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(1 citation statement)
references
References 52 publications
0
1
0
Order By: Relevance
“…The outstanding photocatalytic performance was observed due to heterojunction formation among the g-C 3 N 4 , CuO-NPs, and ZnO-NPs compounds, which minimized the photogenerated e − -h + pair recombination and increased the electron flow rate. Li et al [9] modified polyacrylonitrile hollow nanospheres (HPAN) derived from the polymerization of acrylonitrile in the presence of polystyrene emulsion (as template) using surface amination with ethylenediamine (EDA), using them as a support for loading Pd or PdCo nanoparticles. The authors demonstrated that the prepared PdCo nanoparticles supported on the surface of aminated polyacrylonitrile hollow nanospheres (EDA-HPAN) could be used as a highly active and stable catalyst for the dehydrogenation of formic acid.…”
Section: This Special Issuementioning
confidence: 99%
“…The outstanding photocatalytic performance was observed due to heterojunction formation among the g-C 3 N 4 , CuO-NPs, and ZnO-NPs compounds, which minimized the photogenerated e − -h + pair recombination and increased the electron flow rate. Li et al [9] modified polyacrylonitrile hollow nanospheres (HPAN) derived from the polymerization of acrylonitrile in the presence of polystyrene emulsion (as template) using surface amination with ethylenediamine (EDA), using them as a support for loading Pd or PdCo nanoparticles. The authors demonstrated that the prepared PdCo nanoparticles supported on the surface of aminated polyacrylonitrile hollow nanospheres (EDA-HPAN) could be used as a highly active and stable catalyst for the dehydrogenation of formic acid.…”
Section: This Special Issuementioning
confidence: 99%