BIMO: Bootstrap Inter–Intra Modality at Once Unsupervised Learning for Multivariate Time Series
Seongsil Heo,
Sungsik Kim,
Jaekoo Lee
Abstract:It is difficult to learn meaningful representations of time-series data since they are sparsely labeled and unpredictable. Hence, we propose bootstrap inter–intra modality at once (BIMO), an unsupervised representation learning method based on time series. Unlike previous works, the proposed BIMO method learns both inter-sample and intra-temporal modality representations simultaneously without negative pairs. BIMO comprises a main network and two auxiliary networks, namely inter-auxiliary and intra-auxiliary n… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.