2022
DOI: 10.1101/2022.05.24.492109
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Bimodal electroencephalography-functional magnetic resonance imaging dataset for inner-speech recognition

Abstract: This paper presents the first publicly available bimodal electroencephalography (EEG) / functional magnetic resonance imaging (fMRI) dataset and an open source benchmark for inner speech decoding. Decoding inner speech or thought (expressed through a voice without actual speaking); is a challenge with typical results close to chance level. The dataset comprises 1280 trials (4 subjects, 8 stimuli = 2 categories * 4 words, and 40 trials per stimuli) in each modality. The pilot study reports for the binary classi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 63 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?