Quantum yields and efficiencies of (1)O2 ((1)Δg) production along with photophysical properties for a number of Re(I) complexes in acetonitrile solutions are reported. Two different classes of Re(I) complexes, L(S)-CO2-Re(CO)3(bpy) (L(S) = 2-pyrazine, 2-naphthalene, 9-anthracene, 1-pyrene, 2-anthraquinone) and XRe(CO)3L (X = CF3SO3, py; L = bpy, phen), were probed as photosensitizers for (1)O2 ((1)Δg) production in air-saturated acetonitrile solutions. Depending on the nature of the Re(I) complex, the excited state responsible for the generation of (1)O2 ((1)Δg) is either a metal-to-ligand charge transfer ((3)MLCT) or a ligand centered ((3)LC) state. With L(S)-CO2-Re(CO)3(bpy) complexes, (1)O2 ((1)Δg) is produced by oxygen quenching of (3)LC states of anthracene and pyrene with high quantum yields (ΦΔ between 0.8 and 1.0), while the complexes bearing the ligands L(S) = 2-anthraquinone, 2-pyrazine, and 2-naphthalene did not yield (1)O2. XRe(CO)3L complexes generate (1)O2 ((1)Δg) mainly by oxygen quenching of their (3)MLCT luminescence with an efficiency of (1)O2 ((1)Δg) formation close to unity. Bimolecular rate constants for the quenching of the XRe(CO)3L complexes' emission by molecular oxygen range between 1 × 10(9) and 2 × 10(9) M(-1) s(-1), and they are all ≤ (1/9)kd, in good agreement with the predominance of the singlet channel in the mechanism of (1)O2 ((1)Δg) generation using these Re(I) complexes as photosensitizers. All the experimental singlet oxygen efficiencies are consistent with calorimetric and luminescence data for the studied complexes. With L(S)-CO2-Re(CO)3(bpy) complexes, calorimetric experiments were utilized in the calculation of the quantum yields of triplet formation; namely φT = 0.76 and 0.83 for the triplet states of anthracene and pyrene, respectively.