The management of energy consumption in the building sector is of crucial concern for modern societies. Fossil fuels’ reduced availability, along with the environmental implications they cause, emphasize the necessity for the development of new technologies using renewable energy resources. Taking into account the growing resource shortages, as well as the ongoing deterioration of the environment, the building energy performance improvement using phase change materials (PCMs) is considered as a solution that could balance the energy supply together with the corresponding demand. Thermal energy storage systems with PCMs have been investigated for several building applications as they constitute a promising and sustainable method for reduction of fuel and electrical energy consumption, while maintaining a comfortable environment in the building envelope. These compounds can be incorporated into building construction materials and provide passive thermal sufficiency, or they can be used in heating, ventilation, and air conditioning systems, domestic hot water applications, etc. This study presents the principles of latent heat thermal energy storage systems with PCMs. Furthermore, the materials that can be used as PCMs, together with the most effective methods for improving their thermal performance, as well as various passive applications in the building sector, are also highlighted. Finally, special attention is given to the encapsulated PCMs that are composed of the core material, which is the PCM, and the shell material, which can be inorganic or organic, and their utilization inside constructional materials.