Spo0J (stage 0 sporulation protein J, a member of the ParB superfamily) is an essential component of the ParABS (partition system of ParA, ParB, and parS)-related bacterial chromosome segregation system. ParB (partition protein B) and its regulatory protein, ParA, act cooperatively through parS (partition S) DNA to facilitate chromosome segregation. ParB binds to chromosomal DNA at specific parS sites as well as the neighboring nonspecific DNA sites. Various ParB molecules can associate together and spread along the chromosomal DNA. ParB oligomer and parS DNA interact together to form a high-order nucleoprotein that is required for the loading of the structural maintenance of chromosomes proteins onto the chromosome for chromosomal DNA condensation. In this report, we characterized the binding of parS and Spo0J from Helicobacter pylori (HpSpo0J) and solved the crystal structure of the C-terminal domain truncated protein (Ct-HpSpo0J)-parS complex. Ct-HpSpo0J folds into an elongated structure that includes a flexible N-terminal domain for protein-protein interaction and a conserved DNA-binding domain for parS binding. Two Ct-HpSpo0J molecules bind with one parS. Ct-HpSpo0J interacts vertically and horizontally with its neighbors through the N-terminal domain to form an oligomer. These adjacent and transverse interactions are accomplished via a highly conserved arginine patch: RRLR. These interactions might be needed for molecular assembly of a highorder nucleoprotein complex and for ParB spreading. A structural model for ParB spreading and chromosomal DNA condensation that lead to chromosome segregation is proposed.arginine patch | chromosome segregation | ParABS | ParB spreading | parS T he integrity of chromosomes and plasmids relies on precise DNA replication and segregation (1, 2). The initiation of DNA replication has to synchronize with the cell cycle to ensure precise chromosome segregation (3). In bacteria, the chromosomeencoded plasmid-partitioning system (Par) (4) and the structural maintenance of chromosomes (SMC) condensation complex (5) are two highly conserved systems associate with chromosome segregation and organization. SMC contributes to the overall stability and organization of genome (6-8). The partition system denoted ParABS is comprised of two proteins (ParA and ParB) and a centromere-like DNA element (parS) (9). ParB binds specifically to parS to form a complex. After binding ATP, ParA can interact with the ParB-parS complex to form a nucleoidadaptor complex. ParB promotes the ATP hydrolysis activity of the complex to separate the chromosomes (9-13).In the bacterial chromosomal ParABS system, ParB has two functions: one is to regulate chromosome replication and sporulation (8,12,14) and the other is to participate in chromosome segregation (5,(15)(16)(17). ParB spreads along the chromosomal DNA by binding at specific parS and nonspecific DNA sites to form a high-order partition complex (18)(19)(20). This partition complex is required for the loading of SMC onto the chromosomal DNA (5). In ad...