2022
DOI: 10.48550/arxiv.2206.02558
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Binding Dancers Into Attractors

Abstract: To effectively perceive and process observations in our environment, feature binding and perspective taking are crucial cognitive abilities. Feature binding combines observed features into one entity, called a Gestalt. Perspective taking transfers the percept into a canonical, observer-centered frame of reference. Here we propose a recurrent neural network model that solves both challenges. We first train an LSTM to predict 3D motion dynamics from a canonical perspective. We then present similar motion dynamic… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?