“…However, this computational tool gives comparably low binding energies of peptide-protein docking due to the molecular size, high flexibility, and complexing conformation of the peptide ligand, in addition to the simplification of the analysis of ADV (the electrostatic and solvation potentials are neglected, while van der Waals potential, the nondirectional hydrogen bond term, the hydrophobic term, and a conformational entropy penalty are considered) [20,21]. It can be observed that the binding energy values (Table 1 and Table 2) are significantly lower than the binding energies reported in similar works [6,60,61]. For instance, the experimental and theoretical values of the binding energy reported for ACE2-RBD is around −12.0 kcal/mol, which is higher than the binding energy of −4.6 kcal/mol given here [61].…”