Lupus nephritis is a potentially reversible cause of severe acute kidney injury and is an important cause of end-stage renal failure in Asians and patients of African or Hispanic descent. It is characterized by aberrant exaggerated innate and adaptive immune responses, autoantibody production and their deposition in the kidney parenchyma, triggering complement activation, activation and proliferation of resident renal cells, and expression of pro-inflammatory and chemotactic molecules leading to the influx of inflammatory cells, all of which culminate in destruction of normal nephrons and their replacement by fibrous tissue. Anti-double-stranded DNA (anti-dsDNA) antibody level correlates with disease activity in most patients. There is evidence that apart from mediating pathogenic processes through the formation of immune complexes, pathogenic anti-dsDNA antibodies can bind to resident renal cells and induce downstream pro-apoptotic, pro-inflammatory, or pro-fibrotic processes or a combination of these. Recent data also highlight the critical role of macrophages in acute and chronic kidney injury. Though clinically effective, current treatments for lupus nephritis encompass non-specific immunosuppression and the anti-inflammatory action of high-dose corticosteroids. The clinical and histological impact of novel biologics targeting pro-inflammatory molecules remains to be investigated. Insight into the underlying mechanisms that induce inflammatory and fibrotic processes in the kidney of lupus nephritis could present opportunities for more specific novel treatment options to improve clinical outcomes while minimizing off-target untoward effects. This review discusses recent advances in the understanding of pathogenic mechanisms leading to inflammation and fibrosis of the kidney in lupus nephritis in the context of established standard-of-care and emerging therapies.