In order to solve the problems of low accuracy and unstable system performance existing in binocular vision alone, this paper proposes a threedimensional space recognition and positioning algorithm based on binocular stereo vision and deep learning algorithms. First, a binocular camera for Zhang Zhengyou calibrated by several adjustments, calibration error will eventually set at 0.10pixels best, select and SAD in block matching algorithm in the algorithm, the matching point of the search range reduction, mitigation data for subsequent experiments burden. Then input the three-dimensional spatial data calculated by using the binocular ”parallax” principle into the Faster R-CNN model for data training, extract and classify the target features, and finally realize real-time detection of the target object and its position coordinate information. The analysis of experimental data shows that when the best calibration error is selected and the number of data training is sufficient, the algorithm in this paper can effectively improve the quality of target detection. The positioning accuracy and target recognition rate are increased by about 3%-5%, and it can achieve faster fps.