2013
DOI: 10.12732/ijpam.v83i4.4
|View full text |Cite
|
Sign up to set email alerts
|

Binomial Approximation to the Generalized Hypergeometric Distribution

Abstract: Abstract:In this paper, we use Stein's method and the w-function associated with the generalized hypergeometric random variable to give a bound for the total variation distance between the binomial and generalized hypergeometric distributions.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2013
2013
2014
2014

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 2 publications
0
1
0
Order By: Relevance
“…Note that we are dealing with very large population size (organism’s genome, proteome or set of annotated proteins in the GOA file), in which case the size of the target gene or protein subset is very small compared to the population size. Thus, the p-value can also be approximated by or modeled using the binomial distribution [ 42 ] by taking the relative frequency of occurrence of each GO term in the reference dataset as an estimator of the probability p of observing the GO term under consideration. In this case, a gene taken at random from the reference dataset is an event with two possible outcomes, namely success (1), if the gene is annotated with the GO term, and failure (0) otherwise.…”
Section: Methodsmentioning
confidence: 99%
“…Note that we are dealing with very large population size (organism’s genome, proteome or set of annotated proteins in the GOA file), in which case the size of the target gene or protein subset is very small compared to the population size. Thus, the p-value can also be approximated by or modeled using the binomial distribution [ 42 ] by taking the relative frequency of occurrence of each GO term in the reference dataset as an estimator of the probability p of observing the GO term under consideration. In this case, a gene taken at random from the reference dataset is an event with two possible outcomes, namely success (1), if the gene is annotated with the GO term, and failure (0) otherwise.…”
Section: Methodsmentioning
confidence: 99%