This work puts the Circular Bioeconomy’s concept into action, originally valorizing residues from the beverage liquor coffee industry into reinforcing fillers for green composites of polylactide (PLA). The as-received spent coffee grains derived from liquor waste were first milled to obtain the so-called spent coffee grounds (SCGs), which were then incorporated at 20 wt.% into PLA by extrusion. With the aim of improving the compatibility between the biopolyester and the lignocellulosic particles, two oligomers of lactic acid (OLAs), namely OLA2 and OLA2mal, being the latter functionalized with maleic anhydride (MAH), were both added during the extrusion process at 10 wt.%. The resultant compounded pellets were finally shaped into pieces by injection molding for characterization. Results showed that, as opposite to most claims published in the literature of PLA composites based on lignocellulosic fillers derived from soluble coffee wastes, the incorporation of liquor waste derived SCGs increased the ductility of the pieces by nearly 280% due to their high coffee oil content. The incorporation of OLA2 and OLA2mal contributed to improve the impact strength of the pieces by approximately 6% and 12.6%, respectively. The higher performance of OLA2mal was ascribed to a reduction of crystallinity in the green composite due to the chemical interaction by the MAH groups. However, the incorporation of SCGs into PLA slighlty reduced the thermal stability and yielded a dark-to-brown color, whereas it also delayed the disintegration rate of the pieces in controlled compost soil. Therefore, the results attained herein open up novel opportunities for the development of green composites of PLA with higher ductility and toughness through the valorization of liquor coffee wastes.