Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Comprehending and measuring heat transfer (HT) mechanisms in groundwater systems is crucial for tackling diverse issues and maximizing the use of subterranean resources while reducing ecological consequences. Groundwater flow is frequently simulated and predicted using mathematical models, such as Darcy's law, which governs the movement of fluids through porous media. Thus, a theoretical analysis of HT is therefore carried out for a time‐independent 3D power‐law (PL) nanofluid (NF) flow on the stretching rotating porous disc near the stagnation region, subject to convective boundary condition, using the MHD, heat source/sink, and thermal radiation effects. A numerical simulation via the Keller Box method is performed using PDEs as the mathematical model for the suggested problem. Investigations are conducted on how several classes of pertinent characteristics affect temperature, velocity, surface drag forces, and HT rate. It has been observed that the radial velocity of the disc increases with an escalation in the permeability of the porous media whereas the azimuthal velocity, however, tends to decrease. Additionally, the rate at which heat is transferred escalates as the radiation and heat source/sink parameter's strength increases whereas it decays along the Prandtl and Biot numbers. Lastly, the present study's results can be applied to understand the thermal impact on seepage of groundwater, geothermal energy extraction, containment systems for landfills and waste, design of subsurface infrastructure, aquifer thermal energy storage, and impact assessment against climate change.
Comprehending and measuring heat transfer (HT) mechanisms in groundwater systems is crucial for tackling diverse issues and maximizing the use of subterranean resources while reducing ecological consequences. Groundwater flow is frequently simulated and predicted using mathematical models, such as Darcy's law, which governs the movement of fluids through porous media. Thus, a theoretical analysis of HT is therefore carried out for a time‐independent 3D power‐law (PL) nanofluid (NF) flow on the stretching rotating porous disc near the stagnation region, subject to convective boundary condition, using the MHD, heat source/sink, and thermal radiation effects. A numerical simulation via the Keller Box method is performed using PDEs as the mathematical model for the suggested problem. Investigations are conducted on how several classes of pertinent characteristics affect temperature, velocity, surface drag forces, and HT rate. It has been observed that the radial velocity of the disc increases with an escalation in the permeability of the porous media whereas the azimuthal velocity, however, tends to decrease. Additionally, the rate at which heat is transferred escalates as the radiation and heat source/sink parameter's strength increases whereas it decays along the Prandtl and Biot numbers. Lastly, the present study's results can be applied to understand the thermal impact on seepage of groundwater, geothermal energy extraction, containment systems for landfills and waste, design of subsurface infrastructure, aquifer thermal energy storage, and impact assessment against climate change.
Current study examined the magnetohydrodynamic (MHD) Prandtl nanofluid of a thermal double‐diffusive flow through an exponentially vertical surface in association with heat generation, and thermophoresis effect. The novelty of this study is due to the analysis of Prandtl nanofluid model with Soret mechanism and chemically responding fluids. This suggested model is beneficial since it can significantly advance the domains of thermal and industrial engineering. The fluid flow phenomenon is characterized by nonlinear coupled differential equations involving two or more independent variables. A suitable numerical technique is used to handle the set of governing equations along with a stability and convergence analysis. According to recent study, the fluid velocity increases since all the parameters are set to higher levels. For the various parametric values, isotherms and streamlines have been explored. This suggested model is beneficial since it can significantly advance the domains of thermal and industrial engineering. For instance, thermal radiation is crucial in designing sophisticated energy‐transformed systems that operate at high temperatures. On the other hand, the phenomenon of Soret is useful in separating isotopes in chemical engineering. An important findings of the current investigations can be treated as, radiative heat encourages fluid temperature distribution since it is the measure of the electromagnetic element radiates from the fluid particle that convert it into thermal radiation. These studies have several applications in the manufacturing and biomedical fields, petrochemical industries, automobiles, medical sciences, and various production processes in industries.
Amongst numerous non‐Newtonian fluid models, Eyring‐Powell fluid is prominent owing to its shear thinning, pseudoplastic, and yield stress unique characteristics. It has varied industrial applications including the modeling of polymer melts, food products, and blood flow. This study discusses the Darcy Forchheimer flow of Eyring‐Powell nanoliquid along a nonlinear stretched surface influenced by an inclined magnetic flux. The mass and heat transmissions are supported by active and passive control of nanoparticles respectively. The unique effect of viscous dissipation is introduced to influence the liquid velocity and temperature. Unlike the majority of the research being published that espouses similar solutions, we adopted the non‐similar analysis of the proposed problem to eradicate the chance of the variable in the parameters. This was a challenging task and was taken as a mathematical art rather than a science. The established Buongiorno model is followed to compute the thermophoretic and Brownian motion effects. The numerical computation of this mathematical system is performed using the bvp4c algorithm. The results are described through graphs and in numerically calculated tabulated values. It is determined that wall drag is stronger when the magnetic field is inclined at an angle of than at . Additionally, it is observed that passive control of nanoparticles results in better rates of heat and mass transmissions, against varied values of the fluid parameter with . The validation of the envisioned model is also a part of this exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.