Biomolecule-polymer nanoparticles are recently emerging as a new class of biomolecule-polymer conjugates. They represent promising nanomaterials in a wide range of applications including but not limited to therapeutics, drug delivery systems, antimicrobial agents, sensors, and catalysis. In the past 5 years, there has been a significant effort applied to expand the family of biomolecule-polymer nanoparticles via polymerization-induced self-assembly (PISA) approach. Given the excellent functional group tolerance of PISA process which relies on controlled polymerization methods, a broad spectrum of biomolecules has been incorporated into polymer nanoparticles with various morphologies. In this mini-review, we will highlight the biomolecule-polymer nanoparticles that have been achieved by PISA approach, including (1) protein-polymer nanoparticles, (2) oligopeptide-polymer nanoparticles, (3) nucleic acid-polymer nanoparticles, as well as (4) polysaccharide-polymer nanoparticles. In addition, various PISA strategies based on different controlled polymerization methods will be covered. Potential applications, challenges, and future perspectives of this new library of biomolecule-polymer conjugates are discussed. It is clear from recent research in this field that PISA represents a powerful synthetic tool towards biomolecule-polymer nanoparticles with novel structures and properties previously inaccessible by other synthetic approaches.