Haemonchus contortus, a blood-feeding parasite in grazing sheep, causes economic losses. Drug resistance necessitates exploring plant-based anthelmintics like Artemisia cina (Asteraceae). The plant, particularly its ethyl acetate extract, shows anthelmintic activity against H. contortus. However, there is limited information on pharmacodynamic interactions in ethyl acetate compounds. The study aims to identify pharmacodynamic interactions in the ethyl acetate extract of A. cina with anthelmintic effects on H. contortus eggs and L3 larvae using binary mixtures. Bioactive compounds were isolated via chromatography and identified using spectroscopic techniques. Pharmacodynamic interactions were assessed through binary mixtures with a main compound. Four bioactive compounds were identified: 1-nonacosanol, hentriacontane, peruvin, and cinic acid. Binary mixtures, with peruvin as the main compound, were performed. Peruvin/1-nonacosanol-hentriacontane and peruvin/cinic acid mixtures demonstrated 1.42-fold and 4.87-fold increased lethal effects in H. contortus L3 infective larvae, respectively, at a 0.50LC25/0.50LC25 concentration. In this work, we determined the synergism between bioactive compounds isolated from the ethyl acetate extract of A. cina and identified unreported compounds for the specie.