Mobile service robots often have to work in dynamic and cluttered environments. Multiple safety hazards exist for robots in such work environments, which visual sensors may not detect in time before collisions or robotic damage. An alternative hazard alert system using tactile methods is explored to pre-emptively convey surrounding spatial information to robots working in complex environments or under poor lighting conditions. The proposed method for robot-inclusive tactile paving is known as Passive Auto-Tactile Heuristic (PATH) tiles. These robot-inclusive tactile paving tiles are implemented in spatial infrastructure and are aimed to allow robots to pre-emptively recognize surrounding hazards even under poor lighting conditions and potentially provide improved hazard cues to visually impaired people. A corresponding Tactile Sensing Module (TSM) was used for the digital interpretation of the PATH tiles and was mounted onboard a mobile audit robot known as Meerkat. The experiment yielded a 71.6% improvement in pre-emptive hazard detection capabilities with the TSM using a customized Graph Neural Network (GNN) model.