Evolving over millions of years, hair-like natural flow sensors called cilia, which are found in fish, crickets, spiders, and inner ear cochlea, have achieved high resolution and sensitivity in flow sensing. In the pursuit of achieving such exceptional flow sensing performance in artificial sensors, researchers in the past have attempted to mimic the material, morphological, and functional properties of biological cilia sensors, to develop MEMS-based artificial cilia flow sensors. However, the fabrication of bio-inspired artificial cilia sensors involves complex and cumbersome micromachining techniques that lay constraints on the choice of materials, and prolongs the time taken to research, design, and fabricate new and novel designs, subsequently increasing the time-to-market. In this work, we establish a novel process flow for fabricating inexpensive, yet highly sensitive, cilia-inspired flow sensors. The artificial cilia flow sensor presented here, features a cilia-inspired high-aspect-ratio titanium pillar on an electrospun carbon nanofiber (CNF) sensing membrane. Tip displacement response calibration experiments conducted on the artificial cilia flow sensor demonstrated a lower detection threshold of 50 µm. Furthermore, flow calibration experiments conducted on the sensor revealed a steady-state airflow sensitivity of 6.16 mV/(m s−1) and an oscillatory flow sensitivity of 26 mV/(m s−1), with a lower detection threshold limit of 12.1 mm/s in the case of oscillatory flows. The flow sensing calibration experiments establish the feasibility of the proposed method for developing inexpensive, yet sensitive, flow sensors; which will be useful for applications involving precise flow monitoring in microfluidic devices, precise air/oxygen intake monitoring for hypoxic patients, and other biomedical devices tailored for intravenous drip/urine flow monitoring. In addition, this work also establishes the applicability of CNFs as novel sensing elements in MEMS devices and flexible sensors.