2022
DOI: 10.3389/fbioe.2022.872268
|View full text |Cite
|
Sign up to set email alerts
|

Bio-Inspired Hierarchical Micro/Nanostructured Surfaces for Superhydrophobic and Anti-Ice Applications

Abstract: We report a scalable and cost-effective fabrication approach for constructing bio-inspired micro/nanostructured surfaces. It involves silicon microstructure etching using a deep reactive ion etch (DRIE) method, nanowires deposition via glancing angle deposition (GLAD) process, and fluorocarbon thin film deposition. Compared with the smooth, microstructured, and nanostructured surfaces, the hierarchical micro/nanostructured surfaces obtained via this method showed the highest water contact angle of ∼161° and a … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
5
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
1
1
1

Relationship

1
6

Authors

Journals

citations
Cited by 8 publications
(7 citation statements)
references
References 59 publications
0
5
0
Order By: Relevance
“…Surface wettability, a typical material property that occurs commonly in nature, is gaining increasing attention for both scientific researches and biomedical applications in antifouling materials ( Xie et al, 2019 ; He et al, 2021a ; He et al, 2021b ; Chang et al, 2022 ; Eloffy et al, 2022 ; Rasitha et al, 2022 ; Seli et al, 2022 ; Selim et al, 2022 ; He et al, 2023a ; He et al, 2023b ; He et al, 2023c ), blood contacting materials ( Yang et al, 2020 ; Li et al, 2021 ; Li et al, 2022a ; Li et al, 2022b ), etc. ( Wu et al, 2018 ; Li et al, 2020a ; Wang et al, 2020 ; Guo et al, 2021 ; Han and Gong, 2021 ; Saji, 2021 ; Zhang et al, 2021 ; Zhu et al, 2021 ; Al-Bishari et al, 2022 ; Wang et al, 2022a ; Luo et al, 2022 ; Yao et al, 2022 ; Yu et al, 2022 ; Zhang et al, 2022 ; Gresham and Neto, 2023 ; Li et al, 2023 ; Liao et al, 2023 ; Pan et al, 2023 ). Surfaces can be categorized according to the water contact angle (WCA), as hydrophilic (for WCA <90°) or hydrophobic (for WCA >90°) ( Li et al, 2020b ; Yang et al, 2022 ; Zhao et al, 2022 ).…”
Section: Introductionmentioning
confidence: 99%
“…Surface wettability, a typical material property that occurs commonly in nature, is gaining increasing attention for both scientific researches and biomedical applications in antifouling materials ( Xie et al, 2019 ; He et al, 2021a ; He et al, 2021b ; Chang et al, 2022 ; Eloffy et al, 2022 ; Rasitha et al, 2022 ; Seli et al, 2022 ; Selim et al, 2022 ; He et al, 2023a ; He et al, 2023b ; He et al, 2023c ), blood contacting materials ( Yang et al, 2020 ; Li et al, 2021 ; Li et al, 2022a ; Li et al, 2022b ), etc. ( Wu et al, 2018 ; Li et al, 2020a ; Wang et al, 2020 ; Guo et al, 2021 ; Han and Gong, 2021 ; Saji, 2021 ; Zhang et al, 2021 ; Zhu et al, 2021 ; Al-Bishari et al, 2022 ; Wang et al, 2022a ; Luo et al, 2022 ; Yao et al, 2022 ; Yu et al, 2022 ; Zhang et al, 2022 ; Gresham and Neto, 2023 ; Li et al, 2023 ; Liao et al, 2023 ; Pan et al, 2023 ). Surfaces can be categorized according to the water contact angle (WCA), as hydrophilic (for WCA <90°) or hydrophobic (for WCA >90°) ( Li et al, 2020b ; Yang et al, 2022 ; Zhao et al, 2022 ).…”
Section: Introductionmentioning
confidence: 99%
“…It is known that surface wettability is a result of the surface chemical composition and physical structure ( Young, 1805 ; Zhu et al, 2012 ; Tian et al, 2014 ; Yu et al, 2015 ; Kuang et al, 2016 ; Martin et al, 2017 ; Lee et al, 2022 ; Luo et al, 2022 ; Zhang et al, 2022 ). Silicone- or fluoro-based polymers are the main polymeric materials used to achieve superhydrophobicity or superoleophobicity ( Dobretsov and Thomason, 2011 ), and silicone- and fluoro-based polymers with fouling release properties are suitable for achieving antifouling abilities ( Carl et al, 2012 ; Lejars et al, 2012 ; Liu et al, 2017 ; Liang et al, 2020 ).…”
Section: Introductionmentioning
confidence: 99%
“…The reported fabrication methods of hierarchical micro-/nanostructures (MN) include nanosecond pulsed laser irradiation [ 38 ], femtosecond laser [ 39 ], nanoimprinting [ 40 ], hot-embossing [ 41 ], scanning probe lithography [ 42 ], glancing angle deposition [ 43 ], self-assembly [ 44 , 45 ], metal-assisted chemical etching [ 46 ], etc. The traditional methods for forming hierarchical micro-/nanostructures are shown in Table S1 (Supplementary Materials) .…”
Section: Introductionmentioning
confidence: 99%
“…The traditional methods for forming hierarchical micro-/nanostructures are shown in Table S1 (Supplementary Materials) . Most of these methods rely on costly equipment [ 38 , 39 , 42 , 47 ] and require a high-temperature process [ 41 ] or vacuum environment [ 43 ]. Moreover, many of them require two different fabrication processes [ 39 ] or materials [ 43 ] to form the hierarchical micro-/nanostructures.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation