Affibodies and designed ankyrin repeat proteins (DARPins) are synthetic proteins originally derived from the Staphylococcus aureus virulence factor protein A and the human ankyrin repeat proteins, respectively. The use of these molecules in healthcare has been recently proposed as they are endowed with biochemical and biophysical features heavily demanded to target and fight diseases, as they have a strong binding affinity, solubility, small size, multiple functionalization sites, biocompatibility, and are easy to produce; furthermore, impressive chemical and thermal stability can be achieved. especially when using affibodies. In this sense, several examples reporting on affibodies and DARPins conjugated to nanomaterials have been published, demonstrating their suitability and feasibility in nanomedicine for cancer therapy. This minireview provides a survey of the most recent studies describing affibody- and DARPin-conjugated zero-dimensional nanomaterials, including inorganic, organic, and biological nanoparticles, nanorods, quantum dots, liposomes, and protein- and DNA-based assemblies for targeted cancer therapy in vitro and in vivo.