In Canada, Methylcyclopentadienyl manganese tricarbonyl (MMT) replaced tetraethyl lead in gasoline as an antiknock agent from 1976 until 2003. The combustion of MMT leads to increased manganese (Mn) concentrations in the atmosphere, and represents one of the main sources of human exposure to Mn. The nervous system is the major target of the toxicity of Mn and Mn compounds. The purpose of this study was to investigate exposure-response relationships for neuropathology and tremor, and the associated electromyogram (EMG), following subchronic inhalation exposure of rats to a mixture of Mn phosphate/sulfate particles. Rats were exposed 6 h per day, 5 days per week for 13 consecutive weeks at 30, 300 or 3000 microg m(-3) Mn phosphate/sulfate mixture and compared with controls. Half of the rats had EMG electrodes implanted in the gastrocnemius muscle of the hind limb to assess tremor at the end of Mn exposure. Two days after the end of Mn exposure, rats were killed by exsanguination and Mn concentrations in the brain (caudate putamen, globus pallidus and frontal cortex) were determined by neutron activation analysis while neuropathology was assessed by counting neuronal cells in 2.5 mm x 2.5 mm grid areas. Increased Mn concentrations were observed in all brain sections at the highest level of exposure. The neuronal cell loss was significantly different in the globus pallidus and the caudate putamen at the highest level of exposure (3000 microg m(-3)). No sign of tremor was observed among the rats. In conclusion, exposure to a high level of Mn phosphate/sulfate mixture brought on neuropathological changes in a specific area of the brain; however, no sign of tremor was observed.