Marine pollution caused by heavy metals has emerged as a significant environmental concern, garnering increased attention in recent years. The accumulation of heavy metals in the tissues of marine organisms poses substantial threats to both marine ecosystems and human populations that rely on seafood as a primary food source. Fish and crustaceans are effective biomonitors for assessing heavy metal contamination in aquatic environments. In this study, we determined the concentrations of several heavy metals, including cadmium (Cd), lead (Pb), nickel (Ni), mercury (Hg), and tin (Sn), in four fish species (
Mugil cephalus, Mugil capito, L. aurata,
and
Morone labrax
) and five crustacean species (
S. rivulatus, Cerastoderma glaucum, Paratapes undulatus, R. decussatus, Callinectes sapidus,
and
Metapenaeus Stebbingi
) from Temsah Lake during both winter and summer seasons. To evaluate the potential ecological and health risks associated with consuming these fish and crustacean species, we calculated the metal pollution index (MPI), weekly intake (EWI), target hazard quotient (THQ), and carcinogenic risk (CR) values. The results revealed a noticeable increase in metal levels during the summer compared to winter in the studied samples. Moreover, the concentration of heavy metals in the muscles of the species generally exceeded those in the liver and gills. The MPI values indicated that
Morone labrax
exhibited the highest values during winter, while
L. aurata
showed the highest values during summer.
Mugil cephalus
demonstrated the lowest MPI values in both seasons. The EWI values for the studied metals were found to be lower than the corresponding tolerable weekly intake (TWI) values. Additionally, under average exposure conditions, the THQ and HI data were generally below one for most study species in the area. The calculated CR values for investigated metals in the studied species indicated acceptable carcinogenic risk levels. Therefore, this suggests that consuming studied species within Temsah lake does not present any potential health hazards for consumers.