The use of ascomycetous fungi as pigment producers opens the way to an alternative to synthetic dyes, especially in the red-dye industries, which have very few natural pigment alternatives. The present paper aimed to bio-prospect and screen out 15 selected ascomycetous fungal strains, originating from terrestrial and marine habitats belonging to seven different genera (Penicillium, Talaromyces, Fusarium, Aspergillus, Trichoderma, Dreschlera, and Paecilomyces). We identified four strains, Penicillium purpurogenum rubisclerotium, Fusarium oxysporum, marine strains identified as Talaromyces spp., and Trichoderma atroviride, as potential red pigment producers. The extraction of the pigments is a crucial step, whereby the qualitative and quantitative compositions of each fungal extract need to be respected for reliable identification, as well as preserving bioactivity. Furthermore, there is a growing demand for more sustainable and cost-effective extraction methods. Therefore, a pressurized liquid extraction technique was carried out in this study, allowing a greener and faster extraction step of the pigments, while preserving their chemical structures and bioactivities in comparison to conventional extraction processes. The protocol was illustrated with the production of pigment extracts from P. purpurogenum rubisclerotium and Talaromyces spp. Extracts were analyzed by high-performance liquid-chromatography combined with photodiode array-detection (HPLC-DAD) and high-resolution mass spectrometry (UHPLC-HRMS). The more promising strain was the isolate Talaromyces spp. of marine origin. The main polyketide pigment produced by this strain has been characterized as N-threoninerubropunctamine, a non-toxic red Monascus-like azaphilone pigment.