Glass ionomer cement (GIC), an acid-base cement, is formed by the reaction of weak polymeric acids with inorganic glass powder [1]. GIC has multiple advantages: First, it adheres specifically to the teeth to prevent corrosion or leakage. Second, there is slow release of fluoride ion over time to maintain dental health. Third, its color is very similar to that of human teeth [2,3]. Despite the advantages of GIC, further improvement is required in terms of its mechanical characteristics. In order to improve the mechanical strength of GIC, the resin-modified glass ionomer (RMGI) was developed; it has an additional monomer compared to GIC and improved mechanical strength through photopolymerization and acid-base reaction [4,5]. RMGI obtained by resin curing has improved physical properties, but the amount of the released fluoride ion, which is important in preventing dental caries, is low [4]. Studies have reported on the manufacture of GIC using macromonomer and viscosity dilution materials to exclude the effects of