In this research, we utilize porous tantalum, known for its outstanding elastic modulus and biological properties, as a base material in biomedical applications. The human skeletal system is rich in elements like Ca and Zn. The role of Zn is crucial for achieving a spectrum of sterilizing effects, while Ca is known to effectively enhance cell differentiation and boost cellular activity. The focus of this study is the modification of porous tantalum using a hydrothermal method to synthesize Ca2+/Zn2+-doped Ta2O5 nanorods. These nanorods are subjected to extensive characterization techniques to confirm their structure and composition. Additionally, their biological performance is evaluated through a range of tests, including antibacterial assessments, MTT assays, and bacteria/cell scanning electron microscopy (SEM) analyses. The objective is to determine the most effective method of surface modification for porous tantalum, thereby laying a foundational theoretical framework for its surface enhancement.